Determination of the melting point of hard spheres from direct coexistence simulation methods.
نویسندگان
چکیده
We consider the computation of the coexistence pressure of the liquid-solid transition of a system of hard spheres from direct simulation of the inhomogeneous system formed from liquid and solid phases separated by an interface. Monte Carlo simulations of the interfacial system are performed in three different ensembles. In a first approach, a series of simulations is carried out in the isothermal-isobaric ensemble, where the solid is allowed to relax to its equilibrium crystalline structure, thus avoiding the appearance of artificial stress in the system. Here, the total volume of the system fluctuates due to changes in the three dimensions of the simulation box. In a second approach, we consider simulations of the inhomogeneous system in an isothermal-isobaric ensemble where the normal pressure, as well as the area of the (planar) fluid-solid interface, are kept constant. Now, the total volume of the system fluctuates due to changes in the longitudinal dimension of the simulation box. In both approaches, the coexistence pressure is estimated by monitoring the evolution of the density along several simulations carried out at different pressures. Both routes are seen to provide consistent values of the fluid-solid coexistence pressure, p=11.54(4)k(B)T/sigma(3), which indicates that the error introduced by the use of the standard constant-pressure ensemble for this particular problem is small, provided the systems are sufficiently large. An additional simulation of the interfacial system is conducted in a canonical ensemble where the dimensions of the simulation box are allowed to change subject to the constraint that the total volume is kept fixed. In this approach, the coexistence pressure corresponds to the normal component of the pressure tensor, which can be computed as an appropriate ensemble average in a single simulation. This route yields a value of p=11.54(4)k(B)T/sigma(3). We conclude that the results obtained for the coexistence pressure from direct simulations of the liquid and solid phases in coexistence using different ensembles are mutually consistent and are in excellent agreement with the values obtained from free energy calculations.
منابع مشابه
Determination of Phase Diagrams via Computer Simulation: Methodology and Applications to Water, Electrolytes and Proteins
In this review we focus on the determination of phase diagrams by computer simulation with particular attention to the fluid-solid and solid-solid equilibria. The methodology to compute the free energy of solid phases will be discussed. In particular, the Einstein crystal and Einstein molecule methodologies are described in a comprehensive way. It is shown that both methodologies yield the same...
متن کاملA New Mixing Rule for Mixtures of Hard Spheres
A mixing rule for the mixtures of hard-spheres is presented which can be reduced to the standard van der Waals mixing rule at low densities. The effectiveness of the mixing rule for the size and energy parameters of lennard-Jones fluid are examined by combining them with an equation of state to calculate thermodynamic properties. The results of calculation are compared with the molecular dy...
متن کاملEquilibrium fluid-solid coexistence of hard spheres.
We present a tethered Monte Carlo simulation of the crystallization of hard spheres. Our method boosts the traditional umbrella sampling to the point of making practical the study of constrained Gibbs' free energies depending on several crystalline order parameters. We obtain high-accuracy estimates of the fluid-crystal coexistence pressure for up to 2916 particles (enough to accommodate fluid-...
متن کاملDetermination of virtual point for HPGe detector at various gamma rays energies by simulation and experimental methods
High Purity Germanium detectors (HPGe) are subdivisions of semiconductor detectors which are widely used in nuclear technology from space industry to nuclear medicine, due to their high resolution, low dead time, unlimited size and compatibility with a variety of environments. The( absolute and intrinsic) efficiency of the HPGe detector, which depends on the geometry of the source-detector syst...
متن کاملar X iv : c on d - m at / 0 40 24 14 v 1 [ co nd - m at . s of t ] 1 6 Fe b 20 04 Melting of Polydisperse Hard Disks
The melting of a polydisperse hard disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation unbinding mechanism, as an extension of the 2D hard disk melting problem. We find that while there is pronounced fractionation in polydispersity, the apparent density-polydispersity gap does not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 15 شماره
صفحات -
تاریخ انتشار 2008